ON GENERALIZATION OF NAKAYAMA'S LEMMA
نویسندگان
چکیده
منابع مشابه
Generalization of Mrs. Gerber's Lemma
Mrs. Gerber’s Lemma (MGL) hinges on the convexity of H(p ∗ H(u)), where H(u) is the binary entropy function. In this work, we prove thatH(p∗f(u)) is convex in u for every p ∈ [0, 1] provided H(f(u)) is convex in u, where f(u) : (a, b) → [0, 1 2 ]. Moreover, our result subsumes MGL and simplifies the original proof. We show that the generalized MGL can be applied in binary broadcast channel to s...
متن کاملA Generalization of Rosenfeld’s Lemma
0. Terminology and Notation. Throughout this talk, k is a differential field of characteristic zero under a set ∆ = {δ1, . . . , δm} of commuting derivations, and k{y1, . . . , yn} is the differential polynomial ring in n differential indeterminates over k. We denote by Θ the set of derivative operators generated by ∆: that is, Θ is the free commutative monoid generated by δ1, . . . , δm, so th...
متن کاملA generalization of Mortici lemma
The aim of this note is to obtain a generalization of a very simple, elegant but powerful convergence lemma introduced by Mortici [Mortici, C., Best estimates of the generalized Stirling formula, Appl. Math. Comp., 215 (2010), no. 11, 4044–4048; Mortici, C., Product approximations via asymptotic integration, Amer. Math. Monthly, 117 (2010), no. 5, 434–441; Mortici, C., An ultimate extremely acc...
متن کاملMultivariate generalization of Fekete’s lemma
Fekete’s lemma is a well known combinatorial result on number sequences. Here we extend it to the multidimensional case, i.e., to sequences of d-tuples, and use it to study the behaviour of a certain class of dynamical systems.
متن کاملOn a Generalization of the Kalman-Yakubovich-Popov Lemma
The purpose of this note is to develop a generalization of the K-Y-P lemma and to apply this result to the absolute stability of single-variable Lur’e systems with sector-restricted nonlinearities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2010
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089510000467